Asymptotic behavior of positively curved steady Ricci solitons
نویسندگان
چکیده
منابع مشابه
On Locally Conformally Flat Gradient Steady Ricci Solitons
In this paper, we prove that a complete noncompact non-flat conformally flat gradient steady Ricci soliton is, up to scaling, the Bryant soliton. 1. The result A complete Riemannian metric gij on a smooth manifold M n is called a gradient steady Ricci soliton if there exists a smooth function F on M such that the Ricci tensor Rij of the metric gij is given by the Hessian of F : Rij = ∇i∇jF. (1....
متن کاملNegatively Ricci Curved Manifolds
In this paper we announce the following result: “Every manifold of dimension ≥ 3 admits a complete negatively Ricci curved metric.” Furthermore we describe some sharper results and sketch proofs.
متن کاملAlmost-rigidity and the Extinction Time of Positively Curved Ricci Flows
We prove that Ricci flows with almost maximal extinction time must be nearly round, provided that they have positive isotropic curvature when crossed with R. As an application, we show that positively curved metrics on S and RP 3 with almost maximal width must be nearly round.
متن کاملGradient Kähler Ricci Solitons
Some observations about the local and global generality of gradient Kähler Ricci solitons are made, including the existence of a canonically associated holomorphic volume form and vector field, the local generality of solutions with a prescribed holomorphic volume form and vector field, and the existence of Poincaré coordinates in the case that the Ricci curvature is positive and the vector fie...
متن کاملLocal Existence of Ricci Solitons
The Ricci flow ∂g/∂t = −2Ric(g) is an evolution equation for Riemannian metrics. It was introduced by Richard Hamilton, who has shown in several cases ([7], [8], [9]) that the flow converges, up to re-scaling, to a metric of constant curvature. However, “soliton” solutions to the flow give examples where the Ricci flow does not uniformize the metric, but only changes it by diffeomorphisms. Soli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2017
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/7235